Accelerated Proton Echo-Planar Spectroscopic Imaging Using Parallel Imaging and Compressed Sensing

نویسندگان

  • R. Otazo
  • D. K. Sodickson
  • A. Yoshimoto
  • S. Posse
چکیده

INTRODUCTION: Proton Echo-Planar Spectroscopic Imaging (PEPSI) provides fast spatial-spectral encoding and has been demonstrated to map a variety of metabolites in the human brain [1,2]. Further acceleration in PEPSI can be accomplished by using parallel imaging along the phaseencoding dimension(s) [3,4]. However, the acceleration is limited by the relatively low SNR of the metabolites and g-factor related noise amplification. Compressed sensing was recently introduced as a powerful method to accelerate the MRI encoding process by exploiting the sparsity of the images in a known transform domain (e.g. wavelets) to reconstruct randomly undersampled k-space data [5]. Two-fold accelerated echo-planar spectroscopic imaging has been demonstrated with a compressed sensing technique using wavelets along the spectral dimension to sparsify the image and k-t random undersampling [6]. In this work, a joint reconstruction approach, named Parallel-Sparse PEPSI, is developed to combine compressed sensing and parallel imaging to further accelerate PEPSI encoding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

BACKGROUND AND PURPOSE Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more de...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Accelerated fast spin echo diffusion spectrum imaging in the mouse heart ex-vivo

Background Probing the microscale diffusion of water informs on cardiac microstructural features such as cell density and orientation. Diffusion spectrum imaging (DSI) is widely regarded as the gold standard as it measures diffusion in a model-free manner. However, acquisition times are prolonged due to high sampling requirements in qspace. Various methods of reducing acquisition times have bee...

متن کامل

Accelerated 4D flow imaging using randomly undersampled echo planer imaging with compressed-sensing reconstruction

Introduction 2D phase contrast (PC) CMR is currently the standard clinical imaging sequence for evaluation of blood flow [1]. Recently, 3D time-resolved PC CMR (4D-PC) has been used for quantification and visualization of blood flow in all three directions of a volume [2]. However, such acquisitions require long scan times (often 10-20 minutes), which reduces its clinical feasibility and leads ...

متن کامل

Accelerated Point Spread Function Mapping Using Compressed Sensing for EPI Geometric Distortion Correction

Introduction: Single-shot echo-planar imaging (EPI) is a fast technique allowing the acquisition of an image following a single RF excitation. The high temporal resolution of EPI makes it the method of choice for applications such as fMRI or diffusion tensor imaging. However, EPI is prone to geometric and intensity distortions in the presence of magnetic field inhomogeneities. Several correctio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008